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According to the obtained results for teams i, j 
and k, a new formation may be considered for 
each team considering the opponent at the next 
match. This reformation causes a new solution 
after each iteration. The next step will describe 
this procedure. 
 
D) Team reformation 
This step is an extraction which is possible after 
doing step C. each team attempts to improve own 
characteristics by busing the results extracted 
from SWOT analysis. In this regard, four different 
conditions are possible. Each of them requires a 
specific reformation: 
 

 i winner, l winner: 

ௗݔ
௧ାଵ ൌ ௗܾߣ

௧  ሺ1 െ ௗݕሻߣ
௧ ൬ܿଵݎଵ൫ݔௗ

௧ െ ௗݔ
௧ ൯ 

ቀܿଵݎଶ൫ݔௗ
௧ െ ௗݔ

௧ ൯ቁ൰                                            (3) 

 
 i winner, l loser: 

ௗݔ
௧ାଵ ൌ ௗܾߣ

௧  ሺ1 െ ௗݕሻߣ
௧ ൬ܿଶݎଵ൫ݔௗ

௧ െ ௗݔ
௧ ൯ 

ቀܿଵݎଶ൫ݔௗ
௧ െ ௗݔ

௧ ൯ቁ൰                                            (4) 

 i loser, l winner: 

ௗݔ
௧ାଵ ൌ ௗܾߣ

௧  ሺ1 െ ௗݕሻߣ
௧ ൬ܿଵݎଶ൫ݔௗ

௧ െ ௗݔ
௧ ൯ 

ቀܿଶݎଵ൫ݔௗ
௧ െ ௗݔ

௧ ൯ቁ൰                                            (5) 

 
 i loser, l loser: 

ௗݔ
௧ାଵ ൌ ௗܾߣ

௧  ሺ1 െ ௗݕሻߣ
௧ ൬ܿଶݎଶ൫ݔௗ

௧ െ ௗݔ
௧ ൯ 

ቀܿଶݎଵ൫ݔௗ
௧ െ ௗݔ

௧ ൯ቁ൰                                            (6) 

 
Where,	݀ is the dimension index,	ݎଵ and	ݎଶ are 
uniform random numbers,	ܿଵ and	ܿଶ are constant 
used to scale contribution of retreat and approach 
components, respectively. Finally, ܾ

௧ is the best 
achieved solution for ith team till week t.   
Note that in original equations of LCA there is no 
parameter	ߣ. This proposed parameter establishes 
a convex combination between best and current 
solutions and therefore can improve 
intensification/diversification by its different 
values. Figure 3 outlines a flowchart for LCA 
algorithm. 
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Fig. 3. Flowchart for traditional LCA algorithm 

 
It is obvious that the number of replaced team 
may be considered as a parameter to be set. In this 
research we considered this parameter equal to 3 
implies that 3 teams among of the lowest scored 
ones drop off at the end of each league. But, one 
can consider it as a parameter to be tuned or 
analyzed using sensitivity analysis techniques.  
4- Numerical results 
After describing the traditional LCA and proposed 
play-off approach it can be possible to solve some 
problems using the introduced methods. All 

results have been obtained using a system with 
2.4full CPU and 2GB of RAM. The parameter ߣ 
is considered equal to 0.5 in solving typical 
problems. 
The datasets are randomly generated in large scale 
support vector machine area and solved 10 times 
for computing mean CPU time and also best 
achieved objective function. Table 2 shows an 
outlined report about the size of problem and the 
obtained solution. 

 
Tab. 2. A comparison between LCA and Play-off LCA using some random generated datasets 

(Smax=10, L=18) 

Dataset Size 

Traditional LCA  Play-off LCA 
Num 
of 
Seasons 

Best 
Solution 
(Accuracy) 

CPU 
Time 
(Seconds) 

 
 
 

Num 
of 
Seasons 

Best 
Solution 
(Accuracy) 

CPU 
Time 
(Seconds) 

1 1000×20 8 76% 50  5 76% 43 
2 2500×35 7 65% 218  5 65% 175 
3 4000×29 9 69% 290  5 69% 232 
4 5000×44 10 78% 552  6 78% 438 

Initialization 
(Generate a league of size L and determine 

Number of seasons Smax) 

S=1 

t=1 

Schedule week t matches 

Perform SWOT o teams 

Reform teams

tL-1? 

t=t+1 

SSmax? 

S=S+1 

Report best solution 

No 
Yes

Yes  
No

End
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5 10000×39 10 59% 975  8 63% 749 
6 15000×51 10 91% 1912  7 91% 1532 
7 23000×13 10 87% 747  8 90% 598 
8 30000×26 10 79% 1950  8 79% 1549 
9 50000×71 10 63% 8875  8 78% 7089 
10 75000×48 10 70% 9123  7 70% 7142 

 
It is obvious that the play-off approach 
outperforms traditional one in terms of accuracy 
and CPU time. The improvement comes from this 
fact that traditional LCA has not enough 
intensification which may not be efficient enough 
to converge optimal solution comparing to the 
expulsive scheme. Therefore, adding new teams 
season by season tackles this limitation and hence 
lead to a faster algorithm. For demonstration, 
Figure 5 compares traditional LCA versus play-
off one, graphically. It can be concluded that if the 
size of problem increases, the play-off approach 
shows better performance comparing the old 
algorithm in terms of accuracy and also CPU 
time.  
 

 
Fig. 5. Comparing the CPU time for traditional 

and play-off algorithm 
 
One of the parameters which can effect on the 
achieved results is the convex coefficient  . The 
value of this parameter determines the 
intensification/diversification of the algorithm in 
the other hand, the greater  , the more intensified 
algorithm is. The less value of this parameter also 
leads to a more diversified algorithm. Table 3 
illustrates a comparison for proposed algorithm 

under different value of  using datasets.  
  

Tab. 3. Comparing the accuracy using 
different values for  in play-off algorithm (%) 
λ 
Dataset 

0.1 0.2 0.4 0.5 0.7 0.9 

1 76 73 76 75 74 72 
2 65 64 63 64 63 60 
3 69 69 69 68 67 64 
4 73 78 73 77 76 74 
5 60 62 62 62 63 58 
6 81 89 91 90 89 88 
7 90 90 90 89 88 87 
8 71 73 71 79 77 75 
9 75 78 76 77 76 74 
10 59 65 70 69 68 65 

 
In the semi large-scale datasets small to medium 

values for  is better, while in the large-scale 

cases the small values of  is not efficient. 
Because in the current conditions, there is not 
enough intensification when the value of  is 
small. Generally speaking, there are not 
considerable variations in the accuracies under the 

various values of . Such an occurrence comes 
from this fact that SVM model is convex and 
therefore no local optima trap is confronted. Note 

that, the obtained results for different  `s has 
trivial variations; however after using them to 
classify data the accuracies show more variations 
because of the data sensitivity.  
 
 

5. Conclusion 
This paper addressed a new approach called play-
off in league championship algorithm. The main 
contribution of this approach was considering the 
dropping off for each last ranked team at the end 
of each season. Using this approach it was showed 
that the number of iterations and CPU time can be 
improved during the experimentation. Also a 
sensitivity analysis was conducted on the convex 
combination parameter and the results were 
interpreted. All of the experiments showed the 
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superiority of the proposed method versus 
traditional one. 
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